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Abstract. This paper proposes a method for detecting shapes of vausatic-
ture in images with clutter. The term “variable structureans that some shape
parts can be repeated an arbitrary number of times, some qartbe optional,
and some parts can have several alternative appearan@epartitular variation
of the shape structure that occurs in a given image is not krepriori. Ex-
isting computer vision methods, including deformable madethods, were not
designed to detect shapes of variable structure; they mignbenused to detect
shapes that can be decomposed into a fixed, a priori knowrhewaof parts. The
proposed method can handle both variations in shape steuatul variations in
the appearance of individual shape parts. A new class ofeshrequiels is intro-
duced, called Hidden State Shape Models, that can natuegdhgsent shapes of
variable structure. A detection algorithm is described fimals instances of such
shapes in images with large amounts of clutter by finding ajlgloptimal cor-
respondences between image features and shape modelsintexe with real
images demonstrate that our method can localize plant beanihat consist of
an a priori unknown number of leaves and can detect hands acotgately than
a hand detector based on the chamfer distance.
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Fig. 1. Three shape classes that exhibit variable structure: besnwith leaves, hair combs, and
hand contours. Such classes can be naturally modeled witldehiState Shape Model (HSSM).

1 Introduction

An important problem in computer vision is detecting shapdhe presence of noise,
clutter, and occlusions, and registering such shapes withagel. Ideally we want rich

models that can capture a large range of possible objeetticars, and efficient methods
for registering shapes with such models. This paper intteda detection algorithm
that is explicitly designed for a large category of shapss#a where existing detec-
tion methods are not applicable: shape classes that exhititble structure. The term
“variable structure” is used to characterize shape clasigbghe following properties:

— Some shape parts can be repeated an arbitrary number of liikegbe teeth in the
hair combs of Fig. 1.

— Some shape parts may be missing. For example, in the righbrasch shown on
Fig. 1, one of the leaves on the right side of the branch isingss

— Some parts can appear in alternative ways. For examplegihahd shapes shown
on Fig. 1, a finger can appear totally extended, partiallyt,c@ncompletely bent.
The degree of bending results in different levels of ocdusind thus different 2D
hand shapes.

Natural, biological and man-made objects may have varistlectures that result
in large differences in shape. Blood vessels in the retimajag ducts in the lung,
and dendrites are examples of biological objets with vdgiabructure. Detecting and
recognizing such objects is important for tasks like disgyng diseases of the retina
or detecting nodules in the lung. Roadways and waterwaygrialamages are also
examples of object classes with variable structure.

In order to model shape classes of variable structure, wednte Hidden State
Shape Models (HSSMs), a generalization of Hidden Markov &leqdHMMs) [1].
Using HSSMs, shapes can be detected in polynomial time, &véme presence of
a significant amount of clutter. We describe an algorithm geaforms detection-by-
registration, and finds globally optimal correspondencetsvben the HSSM model
and image features. In experiments with real images, ouhadelbcalizes branches
of leaves with 79% accuracy, without prior knowledge of thenber of leaves, and our
method detects and recognizes hand shapes with highermagdhan a method based
on the chamfer distance.



2 Related Work

A large amount of literature in computer vision addressesisBue of detecting de-
formable shapes in images [2, 3]. Shock graphs [4] and FORB]8gn be used for
fitting deformable models to silhouettes extracted fromges but these methods are
sensitive to segmentation errors that change the topabpgioperties of silhouettes.
Such errors are frequent in the presence of noise and cldether family of de-
formable models are active contours [6] and active shapestadd]. Shape priors can
be incorporated into such models, as shown in [8, 9]. Howagtive contours and ac-
tive shapes cannot be used for automatically detectingaefiole shapes in an image,
unless a good initial alignment between the model and thgénmaprovided.

Graphical models can be used to detect deformable shapawatitally, without
requiring an initial guess [10-12]. When the graphical masl@ sequence of parts,
or a tree, Dynamic Programming (DP) can be used to find a diobptimal registra-
tion between the model and a set of possible shape partdosagven in the presence
of clutter [13-18]. A limitation of DP is that it cannot capéucyclical dependencies
between shape parts. Graphical models using iterativeenée can capture such de-
pendencies, at the cost of not guaranteeing a globally aptpiution [10-12].

The main difference between the method we introduce in tagepand all above-
mentioned methods is that our method can be used for modslithgetection of shape
classes that exhibiariable structure. We should stress that “structure variation'dts n
synonymous with “deformation.” Objects can be totally digind still exhibit variable
structure, like the hair combs in Fig. 1. Deformable modethuds [4-18] can model
deformations of individual shape parts and deformationthaspatial arrangements
between shape parts; they cannot capture structure wasatike the possibility that a
shape part may be repeated an arbitrary number of times. @tioah, in addition to
modeling deformations, is explicitly designed to modelafle structure.

Using existing deformable model methods [4-18], the only wae can model
a shape class of variable structure is by exhaustively aefione deformable model
for each fixed structure that is a legal structure for thapshaass. However, such an
approach can quickly become computationally intractdbde.example, in the branch
images shown in Fig. 1, a unique fixed structure is determiyegpecifying the number
of leaves, and then specifying, for each leaf, if it occurghramleft or the right side of
the stem. Thus, the number of possible fixed structures isrextial to the number of
leaves, and any of the approaches in [4—18] would requirerexptial time to detect
such a shape class. In contrast, our method captures syshwrgability with asingle
model, and thus provides polynomial-time detection.

The HSSM models that we introduce in this paper are a gemati@n of HMMs
[1]. HMMs have been used for shape modeling in previous wbgk-R1]. However, in
those methods, HMMs are used to recognize shapes, and dejection is required
as preprocessing. Traditional HMMs [19-21] cannot be usedbject detection in
clutter, even for objects with fixed structure. Our methotéergs HMMs in a way that
overcomes this limitation.

Complex and variable-structure shapes can also be modéledhape grammars.
Lindenmayer systems (L-systems) have been used sucdgssfabmputer graphics
for generating realistic images of biological shapes [22§eneric shape grammar is



used in [23] for the task of low-level image segmentation @raliping. In [24] a shape
grammar is used to improve the accuracy of rectangle deteatiimages. The main
difference between the proposed method and the methodshbn [22—24] is that
our method, in addition to modeling shape classes of varisilicture, also addresses
the issue of detecting specific shape classes in clutteragam

3 Modeling Shapes with HSSMs

First we introduce formal definitions and notation. TherSacttion 3.2, we provide an
example of how an HSSM can be used to model a shape. In Sec8ave3liscuss how
HSSMs are related to HMMs.

3.1 Terminology and Notation

At a high level, in order to design an HSSM for a specific shadpsscwe need to
perform two steps: first, specify a set of states, where eath sorresponds to a shape
part. Second, specify some cost functions, that can be wsedaluate how well a
sequence of image features matches a sequence of statesfdvtoally, an HSSM is
defined by specifying the following elements:

1. AsetofN statesS = S1,...,Sn.

2. A transition cost functiom. A(S;,S;) is a non-negative real number that repre-
sents the cost of transitioning from stétgto stateS).

3. An observation cost functioB. B(S;, F}) is a non-negative real number that rep-
resents the cost corresponding to observing featiyrat states;.

4. Afeature transition cost functiaB. D(S;, Fj,, S;, F}) is a non-negative real num-
ber that represents the cost associated with consecutivaighing featurds, to
stateS; and featurd'; to stateS;. This feature transition cost function is an impor-
tant difference between an HSSM model and a classical HMMahad explained
in Sec. 3.3.

5. An initial cost function/. I(S;) is a non-negative real number that represents the
cost corresponding to statg being the initial state of the shape.df is not a legal
initial state, ther/ (.S;) = oc.

6. Asubseif C S of legal end states for the shape.

Given a testimag#d, we assume that, using some feature extraction methodopé set
K featuresF = {Fi, ..., Fx } has been extracted. For example eaghan correspond
to an edge pixel, and; can store the location and orientation of that edge pixel.

A registration between the HSSM and the Betf image features is denoted as
Rpo = ((Q1,01),...,(Qr,0r1)), whereQ = (Q1,...,Qr) is a sequence af’
states (eack); € S), andO = (O,,...,0Or) is a sequence df observations (each
O, € F). The pair(Q;, O;), which represents thieth step of the registration, consists
of the model being in stat); (where@; = S; for somej) and the corresponding
feature at that step being; (whereO; = F}, for somek). Intuitively, a registration
specifies which image features correspond to which shape par



The costC(Rg,o) of registrationRq o is defined as follows:

T T-1
C(Rgo) =1(Q1)+ > _ B(Qi,0:)+ Y A(Qi, Qit1)
=1 =1
T-1

+Y D(Qi,0i,Qis1,Oit1) - 1)
i=1

We define an operatian that takes a registratioRg.o = ((Q1,01), ..., (Qr,Or))
and a state-feature pdif), O) and returns a new registration that is the result of append-
ing (@, O) to the end ofR:

Rgo® (an) = ((Q1701)7"'7(QT30T)’(Q7O)) : ()

We define a registratioRg o = ((Q1,01),...,(Qr,Or)) to be atotal registra-
tionif Qr € E, i.e., if the last state of the registration is a legal entediar the HSSM.

Suppose we are given a shape modeled as an HSSM, a registeatgth7,,,,,
and a seF of features extracted from image Detecting the shape in imageconsists
of finding the globally optimal total registratioR,t, i.e., the registration among all
possible total registration8g, o with lengthT,,,. that minimizesC(Rg o). Although
the set of all possible total registrations is exponentidlj,..., the algorithm described
in Sec. 4 finds a globally optimal total registration in paymal time, using DP.

3.2 An Example

Consider the class of branch shapes shown in Fig. 1. Fig.spéagis the state topology
of an HSSM model for this class. We actually use this modet@nexperiments, to de-
tect branches of leaves. In Sec. 5 we quantitatively defiaedst functions associated
with this model. In the next paragraphs we describe at aitivéuevel what we want
to capture with the model topology and the cost functions.

In the model, the stem is modeled as a straight line, and #wedeare modeled as
hexagons. From the inputimage we extract oriented edgési{ixig. 2b). State5; mod-
els the stem. We expect stem features to have an uprightatitem and observation
costB(S1, F;) penalizes for deviations from that orientation. Similathe six states
corresponding to each leaf have low observation costs &iufes whose orientations
are similar to the orientations expected to be observedatthtates.

The state transition cost(S;, S;) is set to zero for all the legal state transitions
shown in Fig. 2a, and to infinity for all other transitions.eTmitial cost(S;) for
stateS, is zero, and the initial cost for all other states is infinitiie feature transition
cost functionD(S;, Fy, S;, Fy) reflects the expectation that, if we match stafevith
featuref), and then we make the transition from staido stateS;, then the featuré;
matched to stat§; should appear in a position negj, and the direction of the vector
connectingl, to F; should be compatible with the transition frafpto 5.

Fig. 2c shows an example registration of the model showngnZ with the edge
image shown in Fig. 2b. We should stress that the model showigi 2a is simply one
of many possible models for the class of branch shapes showigi 1. For example,



/ /
- 11\\_‘ /'\, \\\ 11\ 18,1’7\}6 \\\
@ P, oy, v ~* 19 ,1{15 v
¢ ? “\T // 5‘§\7T1 //
’D I'4 \ [4 1 \
o P52 SN R W
/v®\ ‘/@\ r /) 13/;10
QT gplee” e
‘.\l 5—(?\7'
ce, @llc®m @9 AL CH LA,
AN N P -~ == 4
=T R
| |
a b c

Fig. 2. An HSSM model of the branch class. a). The states of the madel the allowed tran-
sitions out of each state. State models the stem, statés, . . ., S model the left-side leaves,
statesSs, . . ., S13 model the right-side leaves, statfs, ..., Si9 model the top leaf. b). An
edge image, containing a branch and some “clutter” objéatsh line and arc segment stand for
an image feature. c). An example registration of the mod# thie image features: state labels
are shown next to the features they were matched with. Natethie “clutter” features are not
assigned to any state.

one could instead design leaf detectors, and model eacWilted single state. The im-
age features that would be matched to that state would @ameldo locations where the
detector response exceeds a threshold, and the observaibaf each feature would
depend on the detector response at that feature location.

3.3 Relation to HMMs
HSSMs are a superclass of HMMs. An HMM is a special case of 8aNi3n which:

— Feature transition cost functidb is set to zero.

— FunctionA(S;, S;) is the negative logarithm of the transition probability adwing
from stateS; to stateS;.

— FunctionB(S, F) is the negative logarithm of the probability of observingtige
F while at stateS.

— FunctionI(S) is the negative logarithm of the probability 6f being the initial
state.

Overall, if functionsA, B, D andI are defined to be negative log likelihoods, then
the HSSM model becomes probabilistic, and it provides a igeiwve model that de-
scribes how to stochastically generate a set of image fesgiven a shape class. Atthe
same time, if the underlying probability distributions arat available, we can easily
create HSSMs by constructing cost functions either mapwalbutomatically. In our
experiments we found it straightforward and intuitive tdide those functions manu-
ally, as described in Sec. 5.

HMMs are typically used to recognize temporal sequencesbeévations. The
traditional Viterbi algorithm employed in HMMs [1] optimiglassigns a state to each
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Fig. 3. An illustration of the need for a feature transition costdion. A square is modeled
with four statesSi, ..., S4, as shown on the left. Suppose thatS;, F};) compares the edge
orientation atF}, with the orientation corresponding to stae Consider feature$’, F», F3,
shown on the right. Without a feature transition cost fumttiregistratior((S1, 1), (S1, F2)) is
as good as registratiqiS1, F1), (S1, F3)), sinceFy, F», andF3 have the same orientation. The
feature transition cost functial can penalize the transition fro($, 1) to (S1, F3), SinceFs

is so far fromr .

observation, but relies on two key assumptions: first, thatobservations are ordered
(temporal sequences of observations are naturally ordeased on the time in which
they were observed), and second, that each observatiodsheunatched with the
model. In our setting, we cannot use the standard Viterlwralym because neither of
those two assumptions holds. The Baif features is aminordered set of observations,
and only a subset of those observations may actually matmitbdel, since many
(possibly most) observations will correspond to clutter.

Since our system does not know a priori the order in whichufest must be regis-
tered, we need a feature transition cost function to evaldiéferent possible orderings.
This function models the fact that, given two consecutieestS; and.S;, we may
have two features}, andF}. such thatB(S;, Fi,) andB(S;, F}/ ) are very low, but the
featuresF), and I}, are located so far from each other or have some other combined
property that makes them a really bad choice for consedutivatchings; and.S;.
Fig. 3 illustrates an example.

4 Optimal Registration in Clutter

Suppose that we are given an HSSM model, a registrationtéhgt,, and a seF of
features extracted from imagke We want to find a globally optimal total registration
Ropt. In this section we describe how to fidit), . in polynomial time, using a modified
version of the Viterbi algorithm.

As is typical in DP methods, we solve our problem by breakimgiinto many sub-
problems whose solutions are related to each other. Incpdatj we definéV (i, j, k)
to be the registratioRg o that achieves the smallest ca$tRq o) under the following
constraints:



1. Thelength ofRg o is j.
2. Q; = S;. Thatis, the last stat§; of Rq o is stateS;.
3. O; = Fy. That s, the last featur@; of Rg,o is featurefy,.

If j = 1, thenW (i, 5, k) = ((S;, Fx)). Forj > 1, assume that we have already
computedV (i’, j — 1, k') for everyi’ € {1,...,N} andk’ € {1,..., K}, whereN
is the number of states arid is the number of features. Thel¥, (¢, j, k) can be found
easily as follows: first, for notational convenience, foelpi’, &/, we define registration
V(@' ki, 4, k) as:

V(i K i, g, k) = Wi, j — LK) @ (Si, Fr) - (3)

Now, W (i, 7, k) is simply theV (i, k', ¢, 4, k) for which the cosC(V (¢, k', i, j, k))
is minimized:

W(Z.ajv k) = argminV(i/,k/,i,j,k)C(V(ilv k/v ivja k)) . (4)

Suppose that we have computéds, j, k) for every combination of, j, k. We want
to find the globally optimal total registratiaR, ., i.e., the total registratiofg o with
the lowest cosC(Rg o). First we define the séV of all registrationsV (i, Tyax, k)
that are total, meaning that their last state is a legal eatd:st

W = {W (i, Toax, )| S; € E} . (5)

The globally optimal total registratioR,; is simply the registration if¥V with the
lowest cost:
Ropt = argminRQ@eWC’(RQy@) . (6)
RegistrationR,; describes the optimal way to align the HSSM with the observed

image features. It specifies where the shape is in the imagkalso it specifies the
actual structure of the shape, and the location of eachiohgiav shape part.

4.1 Complexity

In the worst case, to determifi& (4, j, k) for a specific combination aof j, k we need
to evaluate{ N possible registrationis (i’, k', , j, k), whereK is the number of image
features andV is the number of model states. Each of these possible ratiists can be
evaluated in constant time assuming that, for eveyyk, when we comput®’ (i, j, k)
we save the cost'(W (4, 4, k)) in an arrayU (4, j, k). Then,

O(V(’Lla k/aiajv k)) = U(Zlv.] - 1a k/) + A(Sl’asz)
+D(Si/,Fk/,Si,Fk) + B(Si,Fk) .

There areD(K TimaxN) possible combinations af j, k. Therefore, the worst case
cost of computing¥ (i, 5, k) for every combination of, j, k is O(K2T,.xN?) op-
erations. This cost is polynomial to all terms, which is mubre efficient than the
brute force method of simply evaluating every one of the egmbially many possible
registrations between the model and the set of image feature

The complexity can be further reduced if we can impose sonuttiadal con-
straints. Constraints can be imposed in three differensway



— By restricting the set of allowed state transitions. Thignietion significantly re-
duces the number of registratiovigi’, k', i, 7, k) that need to be evaluated in order
to find W (4, 4, k), by requiring thatS;; can be legally succeeded B5Y.

— By restricting the set of allowed feature transitions. iflsa restriction is available,
it can be used so that, whéi (¢, j, k) is computed, the system only evaluates
registrationd/ (i, k', i, j, k) such thatFy,, can be legally succeeded .

— By restricting, for each state, the set of features that egally be matched to that
state. ThenW (4, j, k) is evaluated only i, can be legally matched t8).

In the HSSM models used in our experiments we implementeafiose restric-
tions: first, there are at most four legal transitions forrg\aate. Second, we do not
allow a transition between any featurgsand f; if the distance betweefi, and f; ex-
ceeds a threshold. With these two restrictions, the timeptexity of the registration
process is reduced fromM( K 2T yax N?) 10 O(K Tnax N).

5 Implementation

Given a shape class of variable structure, there are sesdeahative ways to set up
an HSSM model for that class. For example, one can definef&pdetectors for in-
dividual shape parts and use the results of those detectdestures [16, 18]. For the
implementation used in our experiments, we opted for a @ngulution, where every
featureF is simply the location of an edge pixel. We denote witf¥") the location of
F, and withf(F') the edge orientation df, where the range af(F') is [0, 27).

Each state&S simply models a line segment with orientatiét). To determine how
well a featureF” matches statg, we simply measure the difference between their ori-
entations. We will denote witi\ (6, , 62) the angle between orientatiofisandfs. The
range ofA(6, 62) is limited to[0, 5 ]. Based on this notation, we define the observation
cost functionB between stat& and featurd: as follows:

B(Sv F) = A(H(S)aH(F)) (7)

In all the models used for the experiments we set the transibst functionA to
zero for state transitions that we define as legal, and toityfior state transitions that
we define as illegal. Every state is allowed to make a tramstt itself. The observation
transition cost functionD(S;, F, S;, F;) depends on the difference in position and
orientation betweefi;, andF;. More formally, we denote by (6) the two-dimensional
unit vector with orientatiod. Given a weighty that balances position and orientation
information, the observation transition cost functibqs;, Fy, S;, F;) is defined as:

D(S:,Fi 3. F) = | — g — VOl +
ol A0(S). 0(5,)) ~ AGFLOE) . (®)

Note that these definitions make the resulting HSSM modetsiant to translation,
since we do not use absolute feature location in any of thifenstions; we only use, in
function D, relative feature location with respect to the locatiorhaf previous feature.
The HSSM models used in the experiments are dependent anastdbrientation. We
obtain the optimal value fax using a validation set, disjoint from the set of test images.
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Fig. 4. Examples of “correct recognition” on images of brancheseaivés (top half) and hand
images (bottom half). For each test image, we show the asheage, the corresponding edge
image, and the edge pixels registered to the HSSM model.

6 Experiments

We have evaluated our method on the task of object locadizati two datasets of real
images containing shapes of variable structure. The fitaiséaconsists of 100 images
of branches of leaves, and the second dataset consists dfaBbltimages (Figs. 4, 5,
6). The task of object localization can be summed up as falidke system knows that
there is a single object of the desired class in the imagethandoal is to successfully
locate the object and identify the orientation and shapb@bbject.

In order to provide quantitative measures of accuracy, weuse the following
terms to describe accuracy on a particular image:

— “Caorrect recognition”; the system has found the shape attieect location and
orientation, has correctly estimated the number of shapis,mnd has correctly
registered each shape part.
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— “Correct localization™: the system has identified the cotrebject location and
orientation. In particular, for the branches we require #&#6 of the stem be reg-
istered correctly, and for hand images we require that t8e @hbthe palm edges be
registered correctly. We allow incorrect estimation of thanber and/or location
of some shape parts, and incorrect registration of somesgbeaybs.

— “Incorrect localization”: the method failed to find the cect object location and
orientation.

Figs. 4, 5, 6 illustrate the meaning of each of these ternts @ample images.
Exhaustive search was used to identify the orientationghed the best registration
score. For each image, eight different orientations wepdiegh, sampled uniformly in
the range from 0 t@x. With respect to the scale of the object, we assumeThat is
known. The values used @, ., were from the sef200, 250, 300, 350, 400, 450, 500}.
The test images wer20 x 160 pixels. All images were converted to grayscale, no
color information was available to the algorithm. Edgesenvextracted using a Canny
edge detector. There were between 2000 and 4000 edge pktedsted from each
image. In the HSSMs used for these experiments we did nat albmsitions between
features that were more than five pixels away. It took abo@trBinutes to process
each image (including trying all eight orientations), watlC++ implementation, on an
Opteron 2.0GHz processor. The memory size of the progranunasr 400MB.

6.1 Experiments on Branch Localization

We constructed an HSSM model for branches of leaves, whaveseoccur at the left
and right side of the stem (Fig. 2). We then applied the reggisi algorithm on 100 real
images of branches. The intention of this experiment wabustiate that our method
extracts useful information from heavily cluttered edgeadgms, and can be a useful
complement to other sources of information, like color, immtand background mod-
eling.

Figs. 4, 5, 6 show example results of our method, and Tableviges a quantitative
evaluation. In 79% of the images our method produced corealization. Registration
was correct in 43% of the images. We find these results pramigiven that we only
used edge information. Incorporating color information amore descriptive features,
like shape context [25] and SIFT features [26], should dyeatprove registration ac-
curacy. Such enhancements remain a topic for future irgyagsbin.

6.2 Experiments on Hand Localization

We have also applied our method to the challenging problefocalizing hands in
grayscale images using only edge information. We compéred¢tection and recog-
nition accuracy of our method to results obtained using Hwtlchamfer distance [27],
and the modified chamfer distance (denoted here as chanstandé + orientations)
that takes edge orientations into account and was used jifid2Band localization.

The class of hand contours that we modeled in this experimeélefined as follows:
the back of the palmis visible, the camera viewing direcigqrerpendicular to the palm
surface, and each of the five fingers can be either extendedaerh Since a hand has
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Fig. 5. Example images of branches and hands where the HSSM haec¢tdocalization” but
not “correct recognition.” For each test image, we show ttiteal image, the corresponding edge
image, and the edge pixels registered to the HSSM model.

Fig. 6. Example images of branches and hands where the result weledadis “incorrect”. For
each test image, we show the actual image, the correspord® image, and the edge pixels
registered to the HSSM model.

five fingers, and each finger can be extended or hidden, we rizdéaedi-structure

models to represent all valid fixed structures. Accordingly used 32 models for the
chamfer distance. In contrast, a single HSSM was sufficientfodeling the entire

range of variations.

We tested our method on 353 real images of hands, from sefferedit subjects.
The images contained a significant amount of clutter. Figs, @ show example results,
and Table 1 quantitatively compares our method to the chadigeance. For detection
and recognition based on the chamfer distance, “correatifation” means that best
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dataset] branchep hands
chamfer distance
method:;] HSSM | HSSM | + orientations | chamfer distance
number of orientationg: 8 8 72 72
correct recognition 43.0% | 33.7% 21.8% 4.0%
correct localization 79.0% | 59.5% 54.6% 35.2%
incorrect localization| 21.0% | 40.5% 45.4% 64.8%

Table 1. Results of HSSM on images of branches and hands, as measurHiDdmages of
branches of leaves and 353 hand images. For hand imagesashalv results using two version
of the chamfer distance. Note that “correct recognition&isubcase of “correct localization.”
Under each method we indicate the number of orientationdathithe method was applied.

response was obtained at the correct position (up to a displant of half the size
of the palm) and orientation (up to 45 degrees). “Correcbgedion” means that, in
addition to obtaining correct localization, the best resmowas obtained by the correct
fixed-structure model.

Since the chamfer distance is not tolerant to large imagaeptotations, we evalu-
ated it on 72 orientations of each testimage. To ensure adaiparison to our method,
the scale of the hand was available to the chamfer distanctese was no need to
search over a range of scales. The search was over all popsikl locations, 72 ori-
entations, and all 32 models. Hand localization using trerder distance took about
15 seconds/image.

As seen in Table 1, our method was more accurate than thésedthined using
either variant of the chamfer distance, in terms of bothexriocalization and correct
recognition. At the same time, we consider the accuracyrtegdere as the “lower
bound” on hand pose matching accuracy with our approacte sinlor features, mo-
tion, etc. could be added to further improve localizatiod egcognition rates [28—30].
We deliberately did not include these additional featuseshat edge-based matching
performance vs. the chamfer distance could be directlgdestd compared.

7 Discussion and Future Work

We have described a novel method for detecting shapes @blarstructure in clut-
tered images, using the proposed HSSM models. A globallynapbtregistration can
be found in polynomial time, using Dynamic Programming. H®&SM models used
in our experiments can be registered with a cluttered imagelonly easy-to-extract,
low level features like edge pixel locations and orientadio

So far we have evaluated our method in a localization settirigere the system
knows that there is exactly one object of interest, and tiséesy tries to find the best
registration hypothesis for that object. However, our radtban also be applied in a
more classical detection setting, where the system doeknwoot a priori if there are
zero, one, or multiple instances of an object. Fig. 7 showsespreliminary results
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Fig. 7. Preliminary results illustrating the ability of our methtwdetect multiple objects in the
same image. Two branches and two hands are detected sudlgessf using, for each input
image, the two highest scoring registrations found by tleppsed registration algorithm.

for multiple instance detection. Those results corresponithe two highest scoring
registrations found using the proposed registration lyor

In this paper, a registration is constrained to be a lineartlered set of feature-
state pairs. However, dynamic programming algorithms dao efficiently produce
registrations that are tree-ordered [16, 18]. Such registrs are more appropriate for
branching shapes like waterways, dendrites, and bloocelgess/le are interested in
extending our method to handle such cases.

Itis interesting to note that our method operates in a §trigittom-up way, and the
resulting global registration is simply the result of maogdl decisions. We expect that
pairing our method with top-down mechanisms can signifigaetuce false matches.
We also believe that the accuracy of the method can be grieaisoved by applying
machine learning methods to optimize the cost functiond tandentify the most dis-
criminative features for each state of the HSSM model. Wecareently working on
incorporating such methods into our framework.
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